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A Note on the Phase Velocity in

Continuously Loaded Coaxial

Cables

The loaded coaxial cable pictured in

Fig. 1 has been analyzed from a transmission

line viewpoint by Prachel and Raisbeck.2
This approach involves finding the equiva-

lent (static) inductance L and capacitance

C per unit length of line and equating the
dominant-mode phase velocity to (L C)-’iz.

Fig. 1. Cross section of axially uniform,
inhomogeneous coaxial cable.

An exact solution for the phase velocity,
neglecting losses, can be found for this sys-

tem by the standard method of generating
scalar wave solutions and applying the ap-
propriate boundary conditions at r = a, b, c,
and d. Thus, the results are a four-by-four
determinantal equation, the lowest roots of

which determine the propagation constant

for the dominant (TM 01) mode. This pro-

cedure has been carried out by the author to

check the accuracy of the transmission line
results.

Solutions for the phase velocity were de-

termined with the help of a computer for
frequencies in the 100 to 200 megacycle
range with dielectric constants ranging from
2 to 10 and relative permeabilities ranging

from 2 to 40.’ For all the cases studied, the
computer results agreed with those pre-
dicted by the approximate theory to within

2.5 per cent. Part of this variance is due to

accuracy limitations or the Bessel function
programs used in the computation. One
may conclude, therefore, that even in cases
of heavy loading, the approximate solution is

quite accurate.
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A.n Extension to the High Loss

Region of the Solution of the

Confocal Fabry-Perot Resonator

Integral Equation

Recently two papers have appeared that
relate the fields in confocal Fabry-Perot

resonators to oblate spheroidal coordinates.

Zimmerer [1] states “ . . the spheroidal
surfaces within the resonator are surfaces of

constant phase and the hyperboloids are
surfaces of constant amplitude. ” Vainshtein

[;! ] shows that starting from an oblate
spheroidal resonator and assuming that the
propagation is directed largely along the z
axis (see Fig. 1), one can determine the
amplitude distribution along a resonator
pllate. The result he obtained agrees very
well with that obtained previously by

Goubau and Schwering [3] who derived
this result more directly from Maxwell’s

equations.

In the course of their work, the Goubau-
%hwering integral (22) appears as
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It is the purpose of this note to show that
the Goubau-Schwering equation can be re-
lated to a known integral equation which
appears when solving for oblate spheroidal
wave functions. Then, as a result, eigen-

values for the high loss regions can be related

tc, tabulated values which will extend the
eigenvalue results previously published [4].

Consider, from Fig. 1, that for R<<ZO
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where a is the Goubau-Schwering parameter
defined by

(3)

Since the oblate spheroidal coordinates

account for the phase terms, one can define

&,* (r, – zo)e~kzo(’+’’l’zo’)= G,(L9, – ZO)

8,+(p, ZO)e-~kzo(l+p’/4202)= G,(@’, Z,) (4)

Also because a reiterative system is de-

sired, one can write

G.(o’, Z,) = PG,(o,– Zo) (5)

where @ is the eigenvalue and represents the

ra~tio of the field intensity amplitude at a
phase transformer to the succeeding phase

transformer, i.e., it is a measure of the loss.
Now substituting (2) to (5) into (1)

leads to
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A change of variables
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in (6) results in
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The angle 6 was assumed to be small in

the above work, and the angle @ was de-
fined only for –w/2 <+< 7/2. As a result of

this latter condition, + maybe assumed to be
periodic outside of this range, and hence

one can express 4 in a Fourier series and find

its first coefficient to be 4/rr. With this (8)

becomes
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One may now compare (9) with (5), (3),
and (12 ) of Flammer [5]. The integral
equation that appears in Flammer is in a
slightly different form than that used in this

work. The derivation of the desired relation

follows immediately. Flammer states
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Let r = O and v = cos 60’ and clivide the
range of the integration into two parts, fro rn

00=Oto 00= ~/2 and from 00= z-/2 to e~= T.1n
the latter range of integration, let % = r — !Io

and for (n —m) even, one has

.Ln(–ic, –Cos i) = Sm.(–ic, ms *) (1’1)

Therefore (10) can be written in tlhe form
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The desired result may now be obtained
by comparing (9) with (12) and relating

where Rmfi@)( —it, io) and .&,,( —k, cos %)

are respectively the oblate spheroidal radial
and angular wave functions. Because the

values of J&W( - ic, io) are tabulated for
various values of m and n [6], it is a simple
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matter to determine the eigenvalues in the
high loss regions. Results for a few modes

are given in Fig. 2 along with the results
for the corresponding modes as obtained
previously for the eigenvalues of the low

loss regions.
lt’hen the oblate spheroidal parameter c

becomes large, the oblate spheroidal angular
functions approach the field distribution

previously obtained by Goubau and Schwer-
ing, i.e., a Gaussian times a Laguerre Poly-
nomial.
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Fig. 2. (left) Iteration loss for various modes.

Fig. 1. (below) Oblate spheroidal coordinate system.
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